Motor compartment size optimization for minimizing yaw motion in small overlap crash

> MY platform 2014012588 안성호 2014012706 조준형

Motivation

Slide away motion

https://news.hmgjournal.com/Tech/hyundai-sonata-platform-safety

Yaw motion after crash

Example : Hyundai 3rd platform

At the motor compartment

- Increase energy absorption
- Optimize load path
- Higher strength of frames

https://news.hmgjournal.com/Tech/hyundai-sonata-platform-safety

Concept and Modeling

Situation

- Right after crash
- Before buckling of upper rail and mid rail
- Elastic deformation

Minimize yaw

• By changing strength of rails (length, thickness)

Model

Simulation

Tx only (barrier impact)

Simulation

Tx = 43.7mm

Size Optimization

Objective function

Displacment of cabin center

- Minimize z direction displacement

Design constraints

번호	이름	최소값	초기값	최대값		
1	w1	5.000000	50.000000	95.000000		
2	h1	5.000000	50.000000	95.000000		
3	t1	0.100000	1.000000	1.900000		
4	t2	0.100000	1.000000	1.900000		
5	w2	5.000000	50.000000	95.000000		
6	h2	5.000000	50.000000	95.000000		
7	t3	0.100000	1.000000	1.900000		
8	t4	0.100000	1.000000	1.900000		

Fixed volume

Correlation analysis

Size optimization

	설계변수 이름	초기값	최소값	최대값	설계안 1		설계	설계안 2		설계안 3		사용자 설계안	
►	w1	50	5	95	34		3	34	31		34		
	h1	50	5	95	20		2	3	24		20		
	t1	t1 1 0.1 1.9 0.69			0.	56	0.57		0.69				
	t2	1	0.1	1.9	1		0.	55	0.62		1		
	w2	50	5	95	74		7	'1	60		74		
	h2	50	5	95	86		6	9	80		86		
	t3	1	0.1	1.9	0.99			1	0.9		0.99		
	t4	1	0.1	1.9	0.75		0.84		0.96		0.75		
					력 (예상값 / 해 [,]	석값)							
	목적함수 변화율 (%)	0			-37		-29		-29				
	제약조건 최대위배율 (%)	1.6			6.1		14		13				
	목적함수-1	21			13		15		15				
	제약조건-1	7.9e+005	7.8e+005	7.8e+005	7.3e+005		6.7e+005		6.8e+005				
*													

Simulation

Tx = 38.6mm

Energy absorption test

Before optimization

After optimization

Conclusion

- Reduce yaw motion by size optimization of motor compartment rails
- Trade off : energy absorption decrease
- In real world yaw motion is more risky for passenger reinforce safety by small yaw motion after small overlap

Thank you!

Chen, H. & Yang, Y. & Wang, L. (2015). Vehicle front structure energy absorbing optimization in frontal impact. 9. 168-172. 10.2174/1874155X01509010168.